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In this Perspective review, we highlight some of the less explored aspects of lateral
habenula (LHb) function in contextual memory, sleep, and behavioral flexibility. We
provide evidence that LHb is well-situated to integrate different internal state and
multimodal sensory information from memory-, stress-, motivational-, and reward-
related circuits essential for both survival and decision making. We further discuss
the impact of early life stress (ELS) on LHb function as an example of stress-
induced hyperactivity and dysregulation of neuromodulatory systems within the LHb that
promote anhedonia and motivational deficits following ELS. We acknowledge that recent
technological advancements in manipulation and recording of neural circuits in simplified
and well-controlled behavioral paradigms have been invaluable in our understanding of
the critical role of LHb in motivation and emotional regulation as well as the involvement
of LHb dysfunction in stress-induced psychopathology. However, we also argue that
the use of ethologically-relevant behaviors with consideration of complex aspects of
decision-making is warranted for future studies of LHb contributions in a wide range of
psychiatric illnesses. We conclude this Perspective with some of the outstanding issues
for the field to consider where a multi-systems approach is needed to investigate the
complex nature of LHb circuitry interactions with environmental stimuli that predisposes
psychiatric disorders.

Keywords: lateral habenula, Q12LHb, memory, reward, motivation, sleep, psychiatric illnesses, early life stress

INTRODUCTION

The lateral habenula Q13(LHb) clearly plays a role in learning and memory since LHb disruption
produces deficits on tasks that require the processing of contextual information (Baker et al., 2015;
Durieux et al., 2020), spatial working memory (Mathis and Lecourtier, 2017; Mathis et al., 2017),
and/or stimuli associated with negative valence outcomes (Stamatakis et al., 2016; Knowland and
Lim, 2018; Sosa et al., 2021). Across these diverse types of memory and cognitive processing, a
fundamental contribution of the LHb may be to constantly monitor one’s current internal state
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relative to external environmental conditions so that behaviors
can be modified as needed (Baker et al., 2015; Mathis and
Lecourtier, 2017; Lecca et al., 2020). Such a contribution
appears to rely on the integration and signaling of cognitive,
motivational/emotional, and behavioral state information
(Sutherland, 1982; Chastrette et al., 1991; Nair et al., 2013;
Mendoza, 2017; Shepard and Nugent, 2021). For example, LHb
responds to positive and negative choice outcomes (Matsumoto
and Hikosaka, 2009; Li et al., 2019), the generation of prediction
error signals (Hong and Hikosaka, 2013; Tian and Uchida, 2015),
changes in motivational and physiological states [e.g., stress, time
of day, etc., (Shepard et al., 2018b; Salaberry et al., 2019; Langlois
et al., 2021)], and changes in behavioral state (Baker et al., 2015;
Nuno-Perez et al., 2018; Lecca et al., 2020).

Functional efferent and afferent connections of the habenula
[reviewed in detail in Baker et al. (2015) and Q14Quina et al.
(2015)] to areas including the frontal cortical areas (Mathis
et al., 2017), the basal ganglia (Wallace et al., 2017), the
ventral tegmental area (Stamatakis et al., 2013; Liu et al.,
2021). Despite increasing supporting evidence of this
broad view of LHb function, a number of significant issues
remain to be resolved if we are to sufficiently understand
the adaptive relevance of the LHb for everyday memory
function. These advances will aid in the development of
novel interventions for neuropsychiatric conditions that
have been linked to LHb dysfunction such as depression,
anxiety, and addiction.

In the following, we focus on key outstanding issues related
to two widely held concepts regarding LHb function: 1) The
LHb serves as a critical interface for context memory and
internal emotional state information, and 2) This integrative
role positions the LHb to play a key role in specific
psychopathological symptoms due to poor integration of context
and emotional information, such as that which occurs when
stressed. Evidence to support these general concepts of LHb
function is highlighted along with examples of research that
exemplify important unresolved issues. It is then suggested that
our understanding of the contribution of the LHb to behavior
can be substantially enhanced by greater inclusion of more
ethologically-relevant tasks. Finally we conclude with suggestions
for paths forward.

ROLE OF THE LATERAL HABENULA IN
MEMORY PROCESSES: AN INTERFACE
BETWEEN CONTEXT AND INTERNAL
EMOTIONAL STATE

A growing number of studies have demonstrated, in rodents,
that pharmacological or chemogenetic inhibition of LHb induced
deficits of several types of memory, including long-term spatial
memory in the water maze (Mathis et al., 2015), contextual
memory in an object-based recognition task (Goutagny et al.,
2013), short-term memory in a delayed non-matching to
position task (Mathis and Lecourtier, 2017), fear memory
in a trace fear-conditioning paradigm (Durieux et al., 2020)

as well as inhibitory avoidance (Tomaiuolo et al., 2014)
[see also Song et al. (2017)]. One noteworthy aspect of
these examinations is that the engagement of the LHb in
learning and memory appears to relate to two aspects of the
ongoing situation: its emotional valence and the context in
which it occurs.

It does not seem surprising that the LHb is particularly
engaged in memory tasks requiring the processing of contextual
cues during negative emotional situations, as it has a major role
in signaling aversion (Hennigan et al., 2015; Li et al., 2019)
and it shows strong activation in response to a large number
of stressors (Chastrette et al., 1991; Lecca et al., 2017; Li et al.,
2019). In the water maze, LHb dysfunctions not only induced
memory deficits, i.e., a greater distance to reach the hidden
platform during training and a lower time spent in the target
quadrant (i.e., the area where the platform—which has since
been withdrawn—was located) during the retention test [see
Mathis et al. (2015)], but also led to signs of exacerbated stress,
i.e., excessive thigmotaxic behavior (swimming along the edge
of the pool) in conjunction with an increased corticosterone
(CORT) release [(Mathis et al., 2015, 2018); see also Jacinto et al.
(2017)].

These types of results following LHb dysfunction suggest that
one of its main roles could be to process different modalities
of an ongoing situation, including external environmental cues
and internal emotional state, and to participate in the elaboration
of appropriate behavioral responses. Hence, the LHb integrates
external information as well as physiological, internal, signals.
In that regard recent studies showed that the LHb signals
stress and punishment in a context-dependent manner, as
combination of stressors or contextual illumination reduces
LHb stress response (Zhang et al., 2016; Huang et al., 2019).
These findings suggest a yet underdetermined influence of
external conditions over the LHb functions. Further studies are
required to better understand how and in which conditions
the LHb can simultaneously deal with external (context, nature
of the threat) and internal (CORT levels, circadian rhythm)
information. Such a role for the LHb in both both stress-
and memory-related information processing raise an important
question: are cognitive deficits a primary consequence of LHb
dysfunction, secondarily inducing defective stress coping, or is
an impossibility to cope with a stressful situation the primary
consequence of LHb dysfunction, secondarily inducing learning
and memory deficits?

At this point it is hard to answer this question. Indeed,
most of the behavioral tests used to assess memory in rodents
often include an aversive component to motivate the animals;
electrical foot shocks in fear conditioning, cool water to swim
in in order to find a hidden platform in the water maze, or
food restriction in a variety of tasks using delayed non-matching
to position paradigms (although the latter also imply reward-
related processes). On the contrary, it might seem simpler to
address stress response processes. Hence, as mentioned above,
the LHb seems to be a crucial structure engaged in the response
to stressors and in signaling aversive situations. The impact
of stress over cognitive performances is well described. While
low levels of stress can improve performances, a high or

Frontiers in Systems Neuroscience | www.frontiersin.org 2 xx 2022 | Volume 16 | Article 826475

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-826475 February 22, 2022 Time: 19:13 # 3

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Baker et al. Lateral Habenula Beyond Avoidance

prolonged stress will eventually induce deficits (Arnsten, 2015),
especially memory deficits (Kim and Diamond, 2002; Roozendaal
et al., 2009). A simple hypothesis would be to consider that,
if altered, the engagement of the LHb in stress integration
will interfere with memory processes, subsequently leading to
performance deficits. This would explain why pharmacological
inhibition of the LHb during the acquisition phase of each
training day prevented learning in a water maze paradigm
(Mathis et al., 2015). Such intervention likely increased the stress
load across training days, resulting in a flat learning curve.
Indeed, impaired rats showed an increased level of thigmotaxic
behavior (Mathis et al., 2015), which can be attributed to
defective stress coping, and exacerbated CORT levels (Mathis
et al., 2018). This is in accordance with the fact that LHb
dysfunction induces anxiety-like behaviors on the elevated plus
maze (Mathis et al., 2015). However, it might seem contradictory
with the fact that when LHb inhibition occurred at the probe
test following a drug-free training phase that should have
attenuated potential stress responses (during which one can
therefore postulate that rats had been used to the stressful
aspect of the situation and had been able to deal with it), it
nonetheless created retrieval deficits (Mathis et al., 2015). In
addition, during this probe test rats showed a reduced swim
speed, suggesting a “calm” exploration of the apparatus. We
have also found using a different paradigm, that following
habituation to the testing condition and drug-free training, LHb
inhibition impaired memory of object locations in an open
field when one of three objections is moved from a previous
location and replaced with a novel object (Goutagny et al.,
2013). All together these results suggest that the LHb role in
stress processing is not likely the only reason for the observed
memory deficits.

These findings appear to support the idea that cognitive
deficits are a primary consequence of LHb dysfunctions,
secondarily inducing exacerbated stress. Indeed, the thigmotaxic
behavior observed in the water maze following LHb inhibition
might reflect the engagement of a default behavioral response as
a consequence of a lack of knowledge about the platform location.
Such a behavior might be interpreted as a “low-cost” strategy
triggered when no memory-based strategy is available. The CORT
elevation would then be a consequence required for the physical
effort and partially reflecting stress.

Finally, a third case would be that the LHb processes
stress- and memory-related information in an independent
manner. However, as said earlier, the existing paradigms assessing
cognitive processes do not necessarily give the possibility to
address stress and memory independently and then together.
Indeed, the intrinsic aversive aspect of most of the behavioral
tests assessing memory prevents from dissociating these two
aspects. One possibility though could be to add a supplementary
stressor and assess the effect of this other stressors on
memory performances.

Beside the behavioral paradigms, understanding how the LHb
receives contextual and stress-related information could help to
answer this chicken and egg question. Indeed, the LHb position
in the central nervous system is of great interest with regard to
stress and cognitive processes. The LHb belongs to the dorsal

diencephalic conduction system conveying information from the
prefrontal cortex, several septal nuclei, the hypothalamus or the
entopeduncular nucleus to midbrain monoaminergic areas such
as the raphe, ventral tegmental area and the locus coeruleus
(Roman et al., 2020).

Understanding how the LHb receives contextual and stressful
information would help to answer this chicken and egg question.
Interestingly, upon cognitive testing, a functional connectivity
between the LHb and both the mPFC (Mathis et al., 2017)
and HPC (Baker et al., 2019; Durieux et al., 2020) has been
shown to exist. In addition, the LHb and HPC, although not
directly anatomically connected, likely communicate whether
it is during exploration of an unfamiliar environment or
during rapid eye movement (REM) sleep episodes (Aizawa
et al., 2013; Goutagny et al., 2013). The link with sleep is
of particular interest as communication between the LHb and
HPC could be related to past experiences and therefore be
part of the mechanisms underlying HPC-dependent learning
and memory processes. A specific role of the LHb in sleep-
dependent processes seems also in accordance with the fact that
the LHb shows circadian oscillatory activity and is implicated
in circadian-related behaviors (Guilding et al., 2010; Baño-
Otálora and Piggins, 2017; Mendoza, 2017; Huang et al., 2019;
Salaberry et al., 2019). A better understanding of the LHb-
related network conveying memory-related information would
help untangle whether memory deficits are at the origin or the
consequences of the observed exacerbated stress response in
the different memory tasks aforementioned (e.g., water maze,
fear conditioning).

Further investigations are needed to fully understand how
the different types of information (contextual vs. stress-related)
are integrated by the LHb. This could be performed using
behavioral paradigms that include repeated stressful situations,
in order to potentially capture habituation processes and coping
strategies. It would be interesting, in such paradigms, to
investigate the activity of the LHb in conjunction with those
of prefrontal cortical, hippocampal, and amygdalar regions, and
explore the level of communication between those structures
according to the different aspects of the paradigm, including
the acute response to the stressful procedure, and the coping
mechanisms upon repetition of it. Examinations could also
include important stress-related structures which send input
to the LHb, such as the hypothalamus (Lecca et al., 2017;
Trusel et al., 2019), the entopeduncular nucleus (Stephenson-
Jones et al., 2016; Li et al., 2019), frontal cortical areas
(Kim and Lee, 2012; Fillinger et al., 2017), and the VTA
(Stamatakis et al., 2013) which likely send information related
to the emotional valence of the situation, thus positioning
the LHb as a cerebral “hub,” linking different macro-systems
(Geisler and Trimble, 2008).

It will also be important to better describe the influence of the
context over the stress-related aspect of the paradigm. The recent
results showing that environmental illumination conditions
directly influence the LHb capacity to signal stress through a
retino-thalamo-habenular circuit, and participates in the effect
of light therapy in depression, is a first step toward this goal
(Huang et al., 2019). The recent advances in neuroscience allow
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in vivo circuit specific investigation and will likely participate in
elucidating these issues.

LATERAL HABENULA REPRESENTS A
KEY NODE FOR INCREASED RISK OF
PSYCHOPATHOLOGY FOLLOWING
EARLY LIFE ADVERSITY

It is well-established that exposure to childhood adversity/early
life stress (ELS) is a strong predictor for several later life mental
disorders, including substance use disorders (SUDs), anxiety
and depression (Heim et al., 2010; Lippard and Nemeroff,
2020; Shepard and Nugent, 2020, 2021). Common forms
of childhood adversity include child abuse and neglect,
domestic violence, and family economic hardship. The
recent COVID-19 pandemic shutdowns across the globe
have caused detrimental effects on child mental health
with the increased risk for domestic violence, child abuse
and neglect, compounded by food and housing insecurity
(Gotlib et al., 2020; Humphreys et al., 2020; Lawson et al.,
2020; Yard et al., 2021). Poor responsivity of psychiatric
patients with a prior history of ELS to psychotherapy and/or
pharmacotherapy further necessitates a better understanding
of the mechanisms and neural circuits that link ELS with
mental illnesses to identify potential novel interventional
therapeutic targets.

Prominent ELS rodent and primate models employ early
disruptions in mother-infant relationship such as a single 24 h
maternal deprivation (MD), repeated daily maternal separation
(MS), and limited bedding and nesting (LBN) (Macrì et al.,
2007; Nishi et al., 2014; Shepard et al., 2018a; Okhuarobo
et al., 2020). Although these ELS models may not reflect all
types of early adverse experiences, they are associated with
persistent depressive-and anhedonia-like behaviors (Tchenio
et al., 2017; Authement et al., 2018; Bolton et al., 2018a;
Shepard et al., 2018b; Simmons et al., 2020) and altered drug
reward (Bolton et al., 2018b; Okhuarobo et al., 2020; Langlois
et al., 2021; Levis et al., 2021) suggesting the translational
validity of these models for child neglect. However, it should
be noted that not all animals that experience ELS develop
stress psychopathology or substance use disorders later in
life which is also the case for children exposed to adversity
(Kalinichev et al., 2002; Moffett et al., 2006; Ordoñes Sanchez
et al., 2021). Thus, in preclinical ELS research, differences
between predictable (MS) and unpredictable (single prolonged
MD and limited bedding and nesting) stressors as well as the
duration of separation and alterations in maternal behavior
should be taken into account which may confer resistance
or vulnerability and directly impact the outcomes in terms
of addictive behaviors, depression and mood phenotypes
in these models.

Several neural pathways and neurobiological mechanisms
such as the hypothalamic-pituitary-adrenal (HPA) axis and extra-
hypothalamic corticotropin-releasing factor (CRF) circuits have
been identified by which ELS may increase the risk for mood

dysregulation, stress-related disorders and addiction (Nemeroff,
2016). Emerging evidence now suggests that ELS-induced
alterations of reward- and stress-related brain regions such as
ventral tegmental area (VTA), amygdala, nucleus accumbens,
prefrontal cortex and LHb may underlie the increased risk for
ELS-induced psychopathology (Authement et al., 2015, 2018;
Peña et al., 2017, 2019; Tchenio et al., 2017; Bolton et al., 2018a;
Shepard et al., 2020; Simmons et al., 2020; Langlois et al., 2021;
Oh et al., 2021; Shepard and Nugent, 2021). Specifically, recent
studies provided compelling evidence that the LHb is a critical
converging brain region for ELS-induced dysregulation of reward
circuits (Tchenio et al., 2017; Authement et al., 2018; Bolton
et al., 2018b; Simmons et al., 2020). The LHb links forebrain
limbic structures with midbrain monoaminergic centers (Schultz,
2010; Cohen et al., 2012; Proulx et al., 2014) and is involved
in reward/aversion-related learning and memory processing
associated with avoidance from stressful and aversive situations
through suppression of dopamine and serotonin systems.
Specifically, anatomically and/or functionally diverse neuronal
populations within the LHb modulate motivated behaviors
through cell type-specific projections to non-overlapping targets
including the VTA, substantia nigra compacta, rostromedial
tegmental area (RMTg), or raphe nuclei (Stamatakis et al., 2016;
Wallace et al., 2017; Cerniauskas et al., 2019; Hu et al., 2020;
Lecca et al., 2020). Not surprisingly, LHb dysfunction contributes
to a myriad of cognitive, learning, and affective impairments
associated with depression, anxiety, psychosis and drug addiction
(Graziane et al., 2018; Nuno-Perez et al., 2018; Proulx et al.,
2018).

The common finding among studies using ELS models
MD (Authement et al., 2018; Shepard et al., 2018b; Simmons
et al., 2020; Langlois et al., 2021) and MS (Tchenio et al.,
2017) is that ELS promotes LHb hyperexcitability although
the underlying mechanisms vary from downregulation of small
conductance (SK2) potassium channels and increased protein
kinase (PKA) activity in LHb (Authement et al., 2018) to
decreased postsynaptic GABABR-GIRK signaling arising from
entopeduncular nucleus GABAergic inputs to LHb (Tchenio
et al., 2017). Additionally, MD in rats persistently increases
both tonic and bursting LHb activity from early adolescence
to adulthood (Authement et al., 2018; Shepard et al., 2018b;
Simmons et al., 2020; Langlois et al., 2021) consistent with
the literature that LHb hyperactivity in general (and bursting
in particular) contributes to the development of depression-
like motivational and social deficits, and anhedonic phenotypes
(Yang et al., 2018; Klein et al., 2020). Either chemogenetic
inhibition of LHb neurons or deep brain stimulation that
reduces LHb activity ameliorates MS-induced depressive-like
phenotype in mice (the lack of motivation of mice to avoid
an aversive context which is an escapable foot-shock) (Tchenio
et al., 2017). Interestingly, juvenile MD rats show an increased
active coping behavior in the forced swim test (with an increase
in climbing behavior) while late adolescent rats exhibit an
increased immobility in the forced swim test, both behavioral
phenotypes are reversed by ketamine treatment (Shepard et al.,
2018b). More importantly, long-lasting anti-depressant effects
of ketamine on MD-induced behavior in young adult rats is
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associated with a return to normal levels of LHb neuronal
excitability (Shepard et al., 2018b). MD also triggers an anhedonic
phenotype in natural sucrose reward while also decreasing
morphine intake in morphine self-administration acquisition
associated with MD-induced glutamatergic plasticity in LHb
neurons (Langlois et al., 2021).

Consistently, it has been shown that synaptic transmission
from the LHb to the RMTg, a nucleus that suppresses dopamine
neuronal activity and signaling, increases during transitions
to immobility in the forced swim test to escape this aversive
context. Activation of this LHb to RMTg circuit also decreases
motivation of rats to work harder to receive sucrose reward
in a progressive ratio schedule of operant appetitive task
suggesting a critical role for the LHb in regulation of motivation
(Proulx et al., 2018). Therefore, it is possible that MD-
induced LHb glutamatergic plasticity and LHb hyperactivity
could increase the excitatory drive from the LHb to the
RMTg and underlie motivational deficits in MD rats. In the
future, it is necessary to employ similar circuit-based studies
of MD effects on motivation such as progressive ratio schedule
in sucrose self-administration, morphine self-administration,
or other motivation based effort tasks (see below). Overall,
these findings highlight the role of LHb hyperactivity in ELS-
induced induction of anhedonic states and altered opioid
seeking where limiting LHb activity using novel fast-acting
antidepressants such as ketamine or deep brain stimulation could
have therapeutic potential. It remains unclear at this point,
however, whether these effects are concurrent with broader
cognitive and behavioral effects as has been noted with the
aforementioned memory related tasks.

The deleterious effects of ELS on reward circuits also involve
alterations of innate stress neuromodulators such as CRF/CRFR1
and dynorphin (Dyn)/kappa opioid receptor (KOR) systems that
contribute to the development of stress-induced drug seeking
behaviors and negative affective states including anhedonia,
social deficits and decreased motivation (as hallmark features
of depression) following ELS (Land et al., 2008; Bruchas et al.,
2010; Koob, 2010; Pautassi et al., 2012; Karkhanis et al., 2016;
Mantsch et al., 2016; Bolton et al., 2018a; Knowland and
Lim, 2018; Tejeda and Bonci, 2019). Recent work on the
neuromodulatory regulation of LHb excitability and synaptic
transmission by CRF/CRFR1 and Dyn/KOR signaling and
their dysregulation by MD in male rats (Authement et al.,
2018; Simmons et al., 2020) further highlight involvement
of critical neuromodulators within LHb circuits that could
underlie ELS-induced anhedonia, motivational deficits, drug
seeking behaviors, and flexibility related behaviors. Intriguingly,
LBN-induced anhedonia is also associated with high c-fos
expression (indicative of increased neuronal activity) in the LHb
and increased extrahypothalamic CRF neurotransmission from
central amygdala (Bolton et al., 2018b), a brain region that also
projects to the LHb (Hu et al., 2020). Therefore, additional
insight into molecular mechanisms underlying CRF/CRFR1 and
Dyn/KOR neuromodulation within LHb and its circuits in ELS
models may offer novel therapeutic interventions with specificity
for uncoupling these pathologically hyperactive stress signaling
pathways following ELS (Q16 Figure 1C).

POTENTIAL INSIGHTS INTO LATERAL
HABENULA FUNCTION UTILIZING
MORE COMPLEX, ETHOLOGICALLY
RELEVANT BEHAVIORS

Initial reports examining the role of the habenular complex,
of which the LHb is a part, placed a wide range of behaviors
from sexual functions, to circadian signaling under its control
(Sutherland, 1982). As the toolkit to examine brain area
contributions to behaviors has advanced, the range of behaviors
typically associated with the LHb has narrowed to principally
include aversive outcome signaling such as the omission of an
expected reward, memory related functions described above,
and adaptive behavioral selection such as during probabilistic
reversal learning where reward contingencies in a T-maze are
reversed once animals learn task contingencies (Nair et al., 2013;
Baker et al., 2015; Sosa et al., 2021). Some of this is likely
due to the ability to restrict interventions to spare fibers of
passage or target specific cell identities. This no doubt ruled out
contributions more likely to have come from nearby areas and the
like. However, another likely contributor has been a reduction in
the range of behavioral conditions examined due to limitations
imposed by advanced recording and manipulation techniques.

What may have been lost with an increased focus on simplified
behaviors is a greater appreciation for the complex ways a
brain area can contribute to dynamic situations. Indeed, the
prior two sections demonstrate that despite rapid advances in
molecular and circuit understanding of the LHb, the nature
of its contribution to integrating stress and memory related
behaviors remains unclear. Recent work in the fear literature
has demonstrated that ethologically relevant behaviors can reveal
additional insight or even challenge long established roles for
brain areas in behavior (Gross and Canteras, 2012; Gomez-Marin
et al., 2014; Kim and Jung, 2018). Specifically, the inclusion of
different scents, visual stimuli, or sounds may help more closely
match what an animal experiences in the wild (Kim and Jung,
2018). For example, one such experiment involved placing rats
in a continuous closed economy where food had to be accessed
by risking shock during one period of the light dark cycle.
Results revealed an amygdala dependent modulation of circadian
rhythms can be elicited when the fear is timed to circadian cues
(Pellman et al., 2015). In addition, realistic predator stimuli such
as a plastic owl that surges from behind a hidden curtain while a
hungry rat is foraging for food elicits opposite habituation to the
fear related cues and willingness to enter a fear context in males
and females than what is observed when using footshock and
freezing as measures (Zambetti et al., 2019). Specifically, female
rats are much less likely to approach the zone in which the owl
surges than male rats.

When considering the role of the LHb in complex human
psychiatric conditions, it is likely that similar additional
insights into complex situations will also be gained by
including ethological behavioral paradigms in animal models
(Gomez-Marin et al., 2014) such as the closed economy, or
simulated predator described above. Prior research utilizing
ethologically relevant, complex behaviors have revealed a wealth
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FIGURE 1 | (A) In aQ5

Q6

given situation, the LHb can be viewed as a recipient of multiple types of information stemming from cortical and subcortical regions. Those
include memory- and flexibility-related information from the mPFC, or hippocampal memory-related information from the septum. Emotional information arises from
the AMG while stress-related information from the mPFC and the LH. Reward and valence-related information reach the LHb from the EPN and the dopamine
system. Finally, light-related information reaches the LHb from the retina, either directly or through the vLGN and SCN. Once the LHb has processed this information,
they are communicated to the dopamine and serotonin systems, as well as to the HPA axis in order to adapt behavioral responses to changes in environmental
constraints. AMG, amygdala; CORT, corticosterone; EPN, entopeduncular nucleus; HPC, hippocampus; LH, lateral hypothalamus; LHb, lateral habenula; mPFC,
medial prefrontal cortex; RMTg, rostromedial tegmental nucleus; SCN, suprachiasmatic nucleus; vLGN, ventral lateral geniculate nucleus; VTA, ventral tegmental
area. (B) Early life stress, such as maternal deprivation (MD) and repeated daily maternal separation (MS) lead to LHb hyperexcitability. Maternal deprivation in
particular also increases LHb neuronal bursting and intrinsic excitability. MS-induced LHb hyperactivity is the consequence of altered input communication from at
least the EPN with down-regulation of GABABR-GIRK signaling. On the other hand, MD dysregulates Dyn/KOR and CRF-CRFR1 signaling pathways while
increasing PKA activity that promotes the downregulation of small conductance (SK2) potassium channels. Increases in LHb bursting and activity can in turn
downregulate dopaminergic and serotonergic transmissions through hyperactivation of the RMTg, and therefore promote stress-related disorders such as anxiety
and depression. Future studies will require an exploration of the potential contributions of other LHb inputs to such intra-LHb molecular disturbances, for example
from the mPFC, NAc, AMG, and LH. AMG, amygdala; EPN, entopeduncular nucleus; LH, lateral hypothalamus; LHb, lateral habenula; mPFC, medial prefrontal
cortex; NAc, nucleus accumbens; RMTg, rostromedial tegmental nucleus; VTA, ventral tegmental area.
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TABLE 1 | Outstanding issues and questions.

1. What role does the LHb play in memory processing by healthy brains? To answer this question, we need to better understand the precise short- vs. long-term
roles of the mPFC and hippocampus in LHb memory processing. Also enhancing the ecologically-relevance and complexity of the behavioral assessments
should facilitate our ability to further dissect the role of the LHb in memory.

2. What types of context memory information are conveyed to the LHb from the mPFC and hippocampus, and how is this information modified during stress or
neuropsychiatric states such as depression and anxiety?

3. Does the neural mechanism of communication between limbic cortex and the LHb change over time, and does this communication become altered in
neuropsychiatric conditions?

4. What are the cellular and network mechanisms by which the LHb integrates context memory (e.g., from mPFC and hippocampus) and motivational information
related to emotional state? Future studies focused on the synaptic basis of memory formation and stress dysregulation of synaptic plasticity at these specific
synaptic inputs to LHb are also warranted.

5. It is well documented that sleep is essential for normal memory and emotion regulation. The strong anatomical connection between the suprachiasmatic
nucleus and the LHb, and functional ties between the hippocampus and LHb, suggest that at least part of a memory influence of the LHb may be related to its
processing during sleep. This is an understudied area of LHb function.

6. LHb theories postulate that LHb output guides response flexibility and behavioral adaptation. The mechanisms involved in such behavioral guidance, however,
are not clear, nor are the details by which stress might modify these output messages.

7. Often memory disruption is thought to be the consequence of a disordered behavioral state such as that observed after stress. It is possible, however, that a
memory disruption could lead to a stressed state. Distinguishing these interpretations is important yet challenging given the dynamic nature of neural systems.

8. Are there differential impacts of maternal separation (predictable stress) and single maternal deprivation (unpredictable stress) when it comes to resistance or
vulnerability to addictive behaviors, depression and other mood phenotypes?

9. What are the critical neuromodulations within LHb that could underly anhedonia, motivational deficits, and drug seeking behaviors?

of information into LHb contributions to decision-making.
For example, Thornton and Evans (1982) observed that when
rats were faced with an inescapable swimming scenario in
the Morris water maze followed by a means of escape via
rope climbing, habenula lesioned animals showed less flexible
behavior (e.g., switching from trying to climb out via the edge
of the pool to swimming to the middle to climb the rope)
and a reduced likelihood of achieving escape. Combining such
varied behaviors alongside the highly targeted molecular and
physiological techniques now at the neuroscientist’s disposal
may elaborate previously unknown, or recently forgotten roles
for the LHb across a range of behaviors. For example, recent
advances in behavioral tracking has led to the ability to precisely
track positional information at a frame by frame granularity
using automated behavioral coding (Nath et al., 2019; Nilsson
et al., 2020). Understanding the neurophysiological changes
associated with shifts in complex behaviors (such as during
social interaction) and cue recognition could be critical to
understanding how the LHb combines input from forebrain and
memory related areas with stress related signals to influence
downstream modulatory systems (Proulx et al., 2014).

To some extent, a revisiting of ethological behaviors in the
LHb literature is already underway. Recent examples including
realistic social aggression paradigms where mice are chronically
socially defeated by a larger more aggressive strain (Flanigan
et al., 2020), experiences of maternal deprivation during rearing
described above (Shepard et al., 2018b), and social behavior
in zebrafish examining decisions to fight or flee (Okamoto
et al., 2021), are particularly relevant behaviors in the context
of psychiatric conditions. In addition, when neural recordings
have been obtained in freely behaving animals in dynamic
environments, a much more complex picture of its role in
ongoing behavior has emerged beyond signaling aversive stimuli
(Baker et al., 2015; Lecca et al., 2020). Specifically, neural signals
correlate strongly with velocity of animals as they seek rewards in
open fields or in a T-maze (Sharp et al., 2006; Baker et al., 2015;

Lecca et al., 2020). It is no doubt that behaviors such
as conditioned place preference/avoidance, highly controlled
delivery of aversive or appetitive stimuli, or sucrose preference
have informed important theories of LHb function. Examining
these theories within the broader view of the LHb in behavior
summarized by Sutherland (1982), among others, will likely help
clarify in what ways the conclusions from simplified paradigms
contribute to more complex decision-making situations. For
example, comparing results from effort based operant tasks such
as progressive ratio (Zapata et al., 2017), with a more ethological
behavior such as rats exerting effort to climb barriers (Sevigny
et al., 2021) could help reveal the extent to which effort or fatigue
is related to anatomical and physiological changes in LHb. This
will further clarify potential LHb contributions to a wide range of
psychiatric conditions.

SUMMARY/CONCLUSION

Over the past 20 or so years, there has been significant evolution
in our understanding of the functional importance of the LHb.
This has led to the generally-accepted views that the LHb plays
a key role in associating context-dependent memory with one’s
emotional state, and that dysfunction of this memory-emotion
interface has neuropsychiatric consequences. As investigations
continue to detail the dynamical nature of synaptic and circuit
interactions of LHb function, it will be important to do so from
a multi-level approach so that we will increasingly understand
LHb function from its molecules to the circuits in which it
is embedded. Having a more detailed comprehension of the
LHb role in computing multimodal information regarding the
emotional valence of a situation, prior stress experiences, and
its contextual properties will likely help understanding some
of the symptoms observed in pathologies associated with LHb
dysfunctions such as depression (Li et al., 2013; Lecca et al.,
2016; Nuno-Perez et al., 2018), addiction (Lecca et al., 2014;
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Velasquez et al., 2014; Mathis and Kenny, 2019) frontotemporal
dementia (Bocchetta et al., 2016), and possibly schizophrenia
(Zhang et al., 2017; Schafer et al., 2018).

The emergence of psychopathological symptoms is
particularly striking when examined under stress induced
contexts. A growing appreciation of the role of early life stress
in LHb processing of emotional context is an example of the
importance of understanding the complex interactions between
memory and goal-directed behavior (Tchenio et al., 2017;
Shepard et al., 2018b; Shepard and Nugent, 2021). Also, the
yet unexplored LHb function in sleep appears relevant due to
the relation between sleep and stress exposure (Goldstein and
Walker, 2014; Vandekerckhove and Wang, 2018), and because
sleep disturbances are key features of pathologies involving
LHb dysfunction such as depression (Kudlow et al., 2013) and
schizophrenia (Carruthers et al., 2021). Such studies examining
the interaction between sleep and stress will likely bring new
insights about cognitive deficits (memory loss, attention deficits,
anhedonia) observed in depressive patients (Hammar and Ardal,
2009; Disner et al., 2011; Culpepper et al., 2017) and other
populations with noted sleep disturbances.

Before we can develop efficient interventions to treat
dysfunctions in memory, stress, sleep, and emotion processing,
a number of questions remain to be addressed to further our
understanding of the behavioral and neural mechanisms that
underlie the LHb’s role in these contexts (Table 1). Overall,
advances in our understanding of the functional significance
of the LHb requires taking a multi-systems approach that
includes the nature of the interactions between the LHb and its
numerous afferent and efferent partners (Figure 1), as well as
how the LHb plays central roles in many types of behaviors and

types of memory. While behaviors including sleep, emotional
processing, and decision-making often require the inclusion of
more complex, or ethologically relevant behavioral assays, the
insights gained from these studies will likely have important
implications for understanding how observed cellular and circuit
changes contribute to complex human psychopathologies.
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