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The ability to make appropriate decisions that result in an optimal outcome is critical
for survival. This process involves assessing the environment as well as integrating prior
knowledge about the environment with information about one’s current internal state.
There are many neural structures that play critical roles in mediating these processes, but
it is not yet known how such information coalesces to influence behavioral output. The
lateral habenula (LHb) has often been cited as a structure critical for adaptive and flexible
responding when environmental contexts and internal state changes. A challenge,
however, has been understanding how LHb promotes response flexibility. In this review,
we hypothesize that the LHb enables flexible responding following the integration of
context memory and internal state information by signaling downstream brainstem
structures known to drive hippocampal theta. In this way, animals respond more flexibly
in a task situation not because the LHb selects a particular action, but rather because
LHb enhances a hippocampal neural state that is often associated with greater attention,
arousal, and exploration. In freely navigating animals, these are essential conditions that
are needed to discover and implement appropriate alternative choices and behaviors.
As a corollary to our hypothesis, we describe short- and intermediate-term functions of
the LHb. Finally, we discuss the effects on the behavior of LHb dysfunction in short- and
intermediate-timescales, and then suggest that new therapies may act on the LHb to
alleviate the behavioral impairments following long-term LHb disruption.

Keywords: behavioral adaptation, lateral habenula, motivation, context memory, hippocampus, medial prefrontal
cortex

INTRODUCTION

One’s ability to behave intentionally, especially when presented with options, involves a number
of complex processes such as selectively attending to relevant sensory input, determining
whether environmental context conditions have changed from what is expected based on past
experience, selecting an appropriate action, assessing the outcome of the selected action relative
to internal state information, and then updating one’s knowledge about the context and response
outcomes to be prepared for the next encounter. A common driver of all of these processes
is not only one’s memory but also the ability of information about one’s internal state to
modulate the efficiency of memory processing and thus memory’s impact on subsequent behaviors.
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Therefore, in order to fully understand real world goal-directed
and flexible behavioral adaptation, it is necessary to understand
not only how the brain processes new information to form
memories, but it is essential to clarify how internal state
(i.e., motivation) information comes to regulate the behavioral
implementation of context memories.

There are a number of excellent and detailed reviews on
brain mechanisms of context memory (e.g., Burgess et al., 2002;
Eichenbaum, 2017; Lisman et al., 2017; Maurer and Nadel,
2021). Since the hippocampus (HPC) is known to be critical for
context memory, and since hippocampal neurons are sensitive
to a broad range of external and internal sensory information
(including rewards and aversive stimuli), our definition of
‘‘context’’ extends beyond the external sensory environment.
While we have made exciting and significant advances in
our understanding of the molecular, as well as neural circuit
and systems changes during context learning and memory,
precisely how context memory intersects with information about
one’s current motivational state to promote adaptive behavioral
outcomes is not clear. This is an important problem to solve for
it applies to many of our everyday behaviors and decisions. As
an example, while you may have learned about and understand
the health benefits of exercise, your motivational state may
conflict with this knowledge, resulting in you deciding not to go
to the gym.

In this review, we focus specifically on the issue of how
brain systems that integrate context memory and motivation
information come to enable freely-navigating animals to
quickly switch behaviors by flexibly responding to changes
in environmental conditions. One approach to resolving this
issue is to consider the advantage that cortical evolution may
have conferred onto a pre-existing, evolutionarily conserved
experience-dependent response flexibility brain system that
involves the epithalamic structure, the habenula. In fish,
amphibians, reptiles, and birds, the habenula receives sensory
and internal state information while sending strong signals to
midbrain structures that regulate overt actions (Stephenson-
Jones et al., 2012). A critical role of the habenula in
response flexibility is supported by findings that habenula
disruption leads to impaired approach or avoidance responses
to dynamic shifts in internal conditions or information,
such as hormone levels (Ogawa et al., 2021), rules for task
performance (Palumbo et al., 2020), or external environmental
context cues. As the neocortex evolved in mammals, so
did the prominence of the lateral division of the habenula
(the lateral habenula, or LHb) as well as LHb connectivity
with frontal cortical areas. Thus, it has been hypothesized
that while the mammalian LHb continues to support flexible
responding, it does so based not only on sensory and internal
state input but also the frontal cortical (presumably context
memory) input (Baker and Mizumori, 2017; Mizumori and
Baker, 2017). Given the growing number of excellent and
relevant published review articles, in the following sections,
we only briefly highlight key findings that support the claim
that the LHb plays important roles in context memory,
processing motivation information, integrating context memory
and motivational state information, and in response flexibility.

Then we suggest a novel hypothesis to address the unanswered
question of how the LHb enables adaptive context-dependent
response flexibility.

LHb IS A HUB FOR MEMORY AND
INTERNAL STATE INFORMATION

At any given point in time, the current constellation of neural
activity and functional connectivity across the brain (considered
here as the internal state) defines the neural foundation
within which new information is processed. One often refers
to such foundational neural states relative to a particular
functional attribute such as a cognitive state, motivational
state, and/or behavioral/response state. As an example, the
patterns of cortical neural activity that exist prior to stimulus
exposure (reflecting the cognitive state) effectively determine
how new sensory information is processed and perceived, which
in turn defines our interpretation and interactions with the
world. In everyday life, different neural states do not function
independently, but rather they are interdependent. For example,
it is well known that altered motivational states, such as
that which occurs when stressed, can bias the efficiency of
information processing to improve (or impair) memory. The
LHb presumably at least identifies, if not also retains (Andalman
et al., 2019), current cognitive andmotivational state information
in order to adjust behavioral responding as task conditions
change.

Cognitive State: Context Memory
Significant evidence supports the generally-accepted view that
the HPC is critically important for context memories (e.g.,
Burgess et al., 2002; Howard and Eichenbaum, 2013; Smith
et al., 2013; Eichenbaum, 2014; Place et al., 2016; Maurer and
Nadel, 2021). Many studies have shown that place cells in the
HPC fire strongly when an animal occupies a particular location
(a place field; O’Keefe and Nadel, 1978; Gothard et al., 1996).
When almost any feature of the context changes, HPC place
fields remap or change their spatial and temporal patterns of
firing. Additionally, place fields link to represent recent past,
present, and future context information (e.g., Muller and Kubie,
1987; Wilson and McNaughton, 1993; Mizumori et al., 1999;
Ferbinteanu and Shapiro, 2003; Leutgeb J. K. et al., 2005; Leutgeb
S. et al., 2005; Smith andMizumori, 2006; Nakashiba et al., 2009).
In the natural world, it would be unfavorable for an animal to
explore an environment similar to one that they have explored
in the past that led to danger. Thus, when faced with a new but
similar context, the HPC is thought to retrieve information about
similar previous experiences (Spiers et al., 2015), then evaluate
the extent to which the current context varies from the retrieved
(expected) context (Mizumori et al., 1999; Vinogradova, 2001).
The degree of similarity between expected and current context
information seems reflected in HPC output signals (Mizumori,
2013).Without proper functioning of the HPC, context memory-
guided behavior becomes significantly impaired (e.g., Morris
et al., 1982; Bradfield et al., 2020; Gridchyn et al., 2020).
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LHb Plays a Role in Context Memory
Early studies that probed LHb functions discovered that its
inactivation results in analgesic-like effects at the time of tonic
pain presentation (Fuchs and Cox, 1993). Soon after, it was
shown that electrical stimulation of the LHb resulted in aversive
behaviors perhaps by generating an aversive signal (Matsumoto
and Hikosaka, 2009a; Friedman et al., 2011). Indeed, LHb
terminals in the ventral tegmental area (VTA) and rostromedial
tegmentum (RMTg) mediate behavioral avoidance (Lammel
et al., 2012; Stamatakis and Stuber, 2012; Brown and Shepard,
2013). Therefore, LHb is often considered the ‘‘aversion center’’
of the brain (Baker et al., 2016). As a result of more recent
studies, however, a number of functions are now attributed to
the LHb in addition to the initial idea that it serves to provide
an aversive signal. For instance, Congiu et al. (2019) found
that aversive foot shocks not only excite the majority of LHb
neurons, but also inhibit the activity of a small population of
excitatory LHb neurons, indicating a more complex function
of the structure. Also, neurons in the LHb have been found
to exhibit changes in activity patterns to rewards, suggesting
the LHb contributes to signaling information to both aversive
and rewarding stimuli (Matsumoto and Hikosaka, 2009a). An
important role of the LHb in HPC-related context memory
has been suggested in numerous studies. For example, LHb
inactivation results in disruption of memory retrieval as well
as an inability to update the spatial configuration of the
environment (Mathis et al., 2015). LHb neurons have also been
shown to keep track of choice outcomes, implicating it in
memory for decisions made during goal-directed tasks (Baker
et al., 2015; Kawai et al., 2015). LHb, then, appears to participate
in the signaling of memories in the recent past, as well as
memories collected over longer periods, suggesting a perhaps
more general modulatory role in memory (Bromberg-Martin
et al., 2010b).

Numerous studies more explicitly show that the LHb is
necessary for accurate context memory processing since its
disruption impairs HPC-dependent context memory tasks such
as the spatial delayed alternation and probabilistic reversal maze
tasks (Baker et al., 2015; Barker et al., 2017; Baker et al., 2019).
LHb is also involved in tasks such as novel object recognition
(Goutagny et al., 2013) and the water maze task (Thornton and
Davies, 1991; Lecourtier et al., 2004). It has also been shown that
the spiking of LHb neurons aligns with the HPC theta phase,
suggesting a crucial interaction between the two regions (Aizawa
et al., 2013). In the case of context-dependent fear memory,
which necessitates the association between a context and an
aversive cue presentation, inactivation of the LHb impaired the
ability to appropriately respond to an aversive context (Durieux
et al., 2020). In sum, a role for the LHb in context memory seems
clear.

What Is the Source of Context Information for the
LHb?
An important outstanding question is the source of context
information for the LHb. It is possible that the HPC relays
contextual information to the LHb to guide proper behavioral
responses. There are, however, no known direct connections

between the HPC and the LHb, suggesting the involvement of
an intermediary brain region. Many studies have demonstrated
the importance of the communication between the cortex and
HPC in context memory and response flexibility (Spellman et al.,
2015; Tamura et al., 2017; Avigan et al., 2020). Notably, one
cortical brain region that plays a crucial role in action selection
when responding to changing contexts, as well as receiving strong
synaptic innervation from the HPC, is the medial prefrontal
cortex (mPFC; Gilmartin and Helmstetter, 2010; Brockett et al.,
2020).When the infralimbic and prelimbic areas of the mPFC are
inactivated, rats exhibit a significantly higher escape latency if the
escape platform in a watermaze is shifted to a different area of the
maze compared to controls (de Bruin et al., 1994; Haddon and
Killcross, 2011). Some mPFC neurons are preferentially active
during specific behavioral states, giving rise to possible state
information that the LHb can use to influence behavior (Halladay
and Blair, 2015). Dysfunction of either the HPC or the mPFC
often results in similar context memory and decision-making
impairments, but several studies have attempted to disentangle
their possible unique properties (Corcoran and Quirk, 2007).
The HPC plays a greater role in the formation and retrieval
of memories about spatial contexts (O’Keefe and Nadel, 1978;
Maurer and Nadel, 2021), while the mPFC plays a more crucial
role in the retrieval of distant memories that are generalizable
to similar contexts (DeNardo et al., 2019; Samborska et al.,
2021).

mPFC neurons display neuronal activity comparable to that
of the LHb in that specific subpopulations display different
activities in response to appetitive and aversive stimuli (Warden
et al., 2012; Rubio et al., 2019; Capuzzo and Floresco, 2020).
This suggests that the mPFC and LHb may have common
functions and/or they both participate in behavioral flexibility.
Such findings imply a potentially important interaction between
the mPFC and LHb. Indeed, studies using both anterograde
and retrograde tracers have identified mPFC fibers terminating
at the LHb, suggesting a functional connection (Kim and Lee,
2012; Mathis et al., 2021). What might be the functions of
mPFC-LHb connections? Along with the evolution of the cortex
came the ability to have greater intentional control over the
execution of behaviors. As the evolution of neocortical memory
systems continued, so did the establishment of connectivity
between cortical memory areas and subcortical structures that
influence action, such as the LHb. mPFC signals in particular,
then, become a strong candidate intermediary structure to
communicate HPC-derived context and other valence-related
information necessary for appropriate and adaptive behavior.
Recent studies have attempted to uncover the nature of the signal
from the mPFC to the LHb as well as its impact on behavioral
output. Mathis et al. (2021) conducted a sequence of experiments
characterizing the activity pattern of mPFC neurons that project
to the LHb and their role in stress. They found that mPFC cells
send signals to the LHb in the presence of a stressful event such
as a foot shock. Moreover, the LHb cells that received signals
from the mPFC had differential behavioral output based on the
different network projection profiles. For instance, the mPFC-
LHb-locus coeruleus projection played a major role in cocaine-
seeking, implicating this projection in reward-seeking behavior.
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The mPFC-LHb-raphe projection was implicated in freezing
behavior in response to a stressor. Interestingly, these findings
are consistent with the theory that the mPFC relays context-
specific information to the LHb, which can serve as a brake signal
(Sleezer et al., 2021) to cease behaviors when appropriate or to
engage behaviors in other aversive contexts.

Another potential source of context information for the
LHb is the septal complex. The septum is a subcortical
midline structure that is divided into medial and lateral septal
portions (MS and LS, respectively) each of which have strong
connections with the HPC and LHb (Swanson and Cowan,
1979). Inactivation of the MS results in spatial working memory
deficits, impairments in HPC place cell activity, as well as
impairments in processing contextual information, implicating
the septum in processing contextual memory (Mizumori et al.,
1989b; Leutgeb and Mizumori, 1999; McGlinchey and Aston-
Jones, 2018). Separating the functional contributions of the LS
and MS to LHb has been challenging. The LS receives input
primarily from the HPC, and projects to the MS, which projects
back to the HPC via the fornix. A strong output of both the
MS and LS is to the LHb (for an in-depth review of septal
inputs and outputs, see Swanson and Cowan, 1979). Silencing
either the LS or the MS results in the overall decrease in
avoidance behavior, while stimulation of excitatory MS inputs to
the LHb induced conditioned place aversion in a two-chamber
avoidance task (Veening et al., 2009; Zhang et al., 2018). The
aversion-induced behavioral effect was positively correlated with
stimulation frequency, which suggests that MS inputs play a
significant role in driving aversive behavior in response to
an aversive context. In terms of septal influences on context
memory, the MS and LS are thought to play a role in maintaining
HPC theta that is necessary for proper spatial and contextual
memory integration (Tsanov, 2018). While theMS has reciprocal
connections with the HPC, the LS only receives unidirectional
inputs from the HPC (Tsanov, 2018). Thus, the MS may be
driving both LHb and HPC activity necessary for contextual
information processing, while the LS may be filtering contextual
HPC information and relaying this signal to the LHb for proper
adaptive behavioral output (Yetnikoff et al., 2015; Tsanov, 2018;
Wirtshafter and Wilson, 2019).

Motivational State
The primary motivating factor of a living organism is the need
for survival. Thus, an animal’s experiences and actions in the
world are highly influenced by recent previous experiences
and motivations. For instance, an animal’s willingness to work
for food is influenced by whether or not they have eaten
recently. There are many outstanding reviews on the neural
circuitry underlying motivational systems (e.g., Berridge, 2004;
Bromberg-Martin et al., 2010a; Morales and Margolis, 2017;
Petrovich, 2018; Burdakov and Peleg-Raibstein, 2020). The
distinct and overlapping motivational systems contribute to a
specific profile of a motivational state. Motivational systems
research has typically focused on relating one’s internal state
to specific biologically-motivated behaviors such as hunger
and feeding behaviors, as well as reproductive hormones
and mate-seeking behaviors. Recent theories postulate that

motivation structures such as the lateral hypothalamus serve as
an interface between motivation and cognition systems (e.g.,
Petrovich, 2018; Burdakov and Peleg-Raibstein, 2020), but it
is not yet known how motivational state influences the type
of response flexibility needed for accurate goal-directed and
context-dependent navigation.

Motivational Information Is Processed by the LHb
The LHb is known to receive a wide range of inputs relating
to one’s internal and external motivational state, such as
value-based signals (Bianco and Wilson, 2009; Trusel et al.,
2019), gustatory signals (Stamatakis et al., 2016), and circadian
rhythm signals (Baño-Otálora and Piggins, 2017). For illustrative
purposes, below we focus on only a few direct sources of
motivation information that are known to modulate LHb
activity, and consequently response flexibility.

The entopeduncular nucleus (EPN) provides significant
motivational input to the LHb. Formerly thought to be primarily
involved in the motor movement (Hauber, 1998), LHb lesions
often resulted in cognitive and not motor-related deficits
(Miller et al., 2006). Additional research unearthed another
potential role for the EPN, implicating it in reward valuation
(Hikosaka et al., 2006). Hong et al. (2011) found antidromic
LHb signals in the globus pallidus (GP), a primate EPN analog,
that differentially responds to reward. Bilateral inactivation
of the GP led to the inability to learn new associations and
task contingencies, implicating the GP in adaptive behavior
(Piron et al., 2016). Interestingly, the EPN exhibits graded
levels of firing activity corresponding to the expectation of
an outcome, suggesting that the EPN encodes the value of
an action as well as the outcome (Stephenson-Jones et al.,
2016). These reward-related signals are sufficient to drive
motivation. For example, Cerniauskas et al. (2019) found that
most EPN neurons synapse onto VTA-projecting LHb neurons,
driving LHb hyperexcitability and inducing motivational
impairments. Thus, the EPN appears to communicate
reward-related signals to the LHb, as well as contributes to
driving motivation.

The lateral hypothalamus (LH) also provides behaviorally-
relevant motivational information to the LHb.regulating
anxiety and depressive-like behaviors. The LH is functionally
heterogeneous, containing both glutamatergic and GABAergic
neurons, activation of which results in different behavioral
responses (Jennings et al., 2013; Trusel et al., 2019). The
LH has prominent projections that terminate in the LHb,
and stimulating this projection results in both excitatory
and inhibitory responses in the LHb, suggesting a potential
bidirectional influence of LH on LHb activity (Stamatakis
et al., 2016). In another study, orexinergic LH signals that
terminate in the LHb result in LHb inhibitory responses, as
well as increases in aggressive behavior (Flanigan et al., 2020).
Excitatory responses in the LHb as a result of glutamatergic
LH stimulation result in aversive behavior and it plays a role in
generating a prediction signal for future negative events (Lecca
et al., 2017; Lazaridis et al., 2019). As such, the LH exhibits a
two-factor influence on LHb activity and subsequent motivated
behavior.
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The lateral preoptic area (LPO) is a critical structure for
motivational drive and it provides one of the largest inputs to
the LHb (Yetnikoff et al., 2015). Comparable to other structures
that bidirectionally influence LHb activity, the LPO also exerts
bivalent control over the LHb, which influences the motivational
state. Interestingly, glutamatergic and GABAergic LPO neurons
simultaneously synapse on individual LHb neurons and both
are activated by aversive stimuli (Barker et al., 2017). However,
when stimulated individually, glutamatergic and GABAergic
LPO inputs to the LHb produce divergent behavioral responses.
This suggests that LPO activity is able to influence individual
LHb neurons and drive opposing motivational states.

All mammals have a biological clock that regulates the
activity of physiological functions (i.e., immune system
coordination) and prepares them for specific motivated
behaviors. The circadian rhythm is influenced by both
intrinsic (i.e., physiological states, autonomic arousal) as
well as extrinsic activity (i.e., daylight, food). For instance,
animals that exhibit diurnal rhythms, like most primates, have
increased motivation during the day to socialize and hunt
for food. Without regular circadian rhythmicity, motivation
lowers and animals tend to make less-optimal decisions (Acosta
et al., 2020). Although many brain regions have been shown
to play a role in this internal rhythmicity, the suprachiasmatic
nucleus (SCN) is the most prominent. The SCN organizes
the activity in the brain that inevitably influences the body
through its inherent ability to oscillate and synchronize the
activity of multiple brain regions. The LHb appears to play
an important role in circadian rhythmicity (Sakhi et al.,
2014; Baño-Otálora and Piggins, 2017; Mendoza, 2017),
likely as a result of receiving significant input from the
SCN. Paul et al. (2011) found that LHb lesions resulted in
motor and circadian rhythm impairment, implicating the
LHb in the relay of SCN circadian rhythmicity important for
behavior. It is possible that the LHb is integrating information
about circadian rhythms to appropriately time-motivated
behaviors for optimal decisions (Mendoza, 2017). Lastly,
reward-signaling structures (i.e., the VTA) have shown
to exhibit circadian rhythm firing, highlighting the LHb’s
circadian rhythm regulation of reward systems more generally
(Bussi et al., 2014).

While the EPN, LH, LPO, and the SCN each strongly
and directly relays motivational information to the LHb, it
is worth noting that motivation information may bias the
nature of information arriving in LHb from other structures
not traditionally considered to be related to motivation,
such as the mPFC. For example, in times of deliberation,
an animal must evaluate options and select an action that
would lead to the most optimal outcome. These actions most
often have to do with approaching reward or avoidance
of punishment. Selecting the action with the most optimal
outcome involves evaluating similar previous actions and their
respective outcomes. This manifests itself in the form of reward
and reward prediction error signals (Bromberg-Martin and
Hikosaka, 2011). Such value-based (motivation-related) signals
are encoded at the time of action selection and outcome
evaluation and are used to inform future behavior. The VTA

and nucleus accumbens (NAcc) are likely involved early in
this decision process since they seem to track outcomes and
generate reward prediction signals as shown by neural activity
that correlates with behavior and motivational effort for both
the VTA (Bromberg-Martin et al., 2010a) and NAcc (Hamid
et al., 2016). NAcc activity, however, is not dependent on
VTA input (Floresco et al., 1998). Instead, the basolateral
amygdala (BLA), involved in reward-related associative learning,
appears to drive NAcc reward firing. Importantly, these
NAcc signals come to influence LHb activity which then
drives downstream structures, such as the VTA, toward the
facilitation of reward approach or punishment avoidance
behaviors (Bianco and Wilson, 2009). It is unclear whether the
direct projection from the NAcc to the LHb influences motivated
behavior.

The Ventral Pallidum (VP) receives significant reward-related
signals from the NAcc and it in turn relays this information
to the LHb via both glutamatergic and GABAergic projections
(Soares-Cunha et al., 2020; Stephenson-Jones et al., 2020).
Inhibition of excitatory VP inputs to the LHb abolished reward-
seeking behavior, while inhibition of inhibitory VP inputs to
the LHb abolished behavioral avoidance (Knowland et al., 2017;
Stephenson-Jones et al., 2020). Therefore, subpopulations of VP
neurons (perhaps influenced by the NAcc) bi-directionally drive
behavior via their inputs to the LHb in different motivational
contexts.

The VTA-PFC projection has been implicated in many
cognitive and behavioral processes such as mood regulation
(Walsh and Han, 2014). Importantly, stimulation of VTA
neurons induces neuroplastic strengthening of cortical inhibitory
circuits, thereby inhibiting overall PFC activity (Zhong et al.,
2020). Concurrently, dopamine injection increases theta
coherence between the HPC and mPFC (Benchenane et al.,
2010). It is possible that reward-related dopaminergic signals
reach the PFC to update cortical information such that it more
precisely represents the present situation relative to the HPC.
In this way, information sent from the mPFC to the LHb is
behaviorally relevant, thereby promoting timely and appropriate
behaviors.

Motivational Influence on Contextual Information
Behaviorally, many experiments have exemplified the positive
influence of motivation, induced by factors such as reward
magnitude, on performance in context-related goal-oriented
tasks (Sänger and Wascher, 2011). Additionally, the presence
of reward in specific predictable locations results in animals
returning to these rewarded locations at a higher rate in the
future (see Anselme, 2021 for review). It is possible that context
information within PFC signals and motivational information
from a number of subcortical structures arrive at LHb in a
temporally precise manner that biases LHb outputs appropriate
for a particular context. For example, Chang et al. (1998) showed
that a subset (∼5%) of PFC and NAcc neurons respond to
a rewarding stimulus simultaneously. At the population level,
theta oscillatory synchrony between the PFC and VTA increases
during actions that were likely to result in a reward (Park and
Moghaddam, 2017). The synchronized theta activity may be
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linking the PFC contextual information with the VTA reward
signal, allowing the LHb to receive in a timely manner input to
associate motivational and contextual PFC information.

The mPFC is thought to serve as an inhibitory control for
motivated behaviors by interacting with the HPC and retrieving
context-appropriate memories to inform future action selection
(McDonald et al., 2008; Chen et al., 2013; Zelikowsky et al.,
2013; Porter et al., 2019). Interestingly, HPC neurons that
project to the mPFC (Hsu et al., 2018), and mPFC neurons
that project to the LHb (Mathis et al., 2021), appear to inhibit
motivated behavior to seek reward, implicating this circuit in
the motivational regulation of reward seeking. The HPC itself
has been shown to monitor and respond to motivational states
when associated with a particular context (Kennedy and Shapiro,
2009). Specifically, Kennedy and Shapiro (2009) show that HPC
single units respond preferentially to a context paired with
reward only when the rats were hungry or thirsty. This may
be a result of motivational inputs directly influencing the HPC,
as many of the aforementioned motivational circuits, such as
the VTA (Gasbarri et al., 1994; Martig et al., 2009; Ghanbarian
and Motamedi, 2013), SCN (Phan et al., 2011; McCauley et al.,
2020), LH (Samerphob et al., 2015; Noble et al., 2019; Rezaee
et al., 2020), EPN (Sabatino et al., 1986; Chen Y. et al., 2020),
and amygdala (Sheth et al., 2008; Tsoory et al., 2008; Ghosh
et al., 2013), synapse onto and influence HPC activity. In
sum, these findings demonstrated that the LHb is not alone in
integrating motivational and memory information since cortical
memory information likely already incorporates some aspects of
motivation. What distinguishes the LHb from cortical systems
that may be influenced by motivational andmemory states is that
LHb output may more directly determine optimal and adaptive
behavior.

Motivation and Memory-Guided Decisions
All previous experiences serve as roadmaps for future decisions,
actions, and their respective outcomes. The selection of an action
that leads to a particular outcome will occur only when an
animal is motivated. As mentioned above, the experience of
hunger/satiation, the state of the biological clock, and internal
valuation of possible outcomes define one’s motivational states
which guide and direct goals. As such, there is a necessary
link between motivations and decisions, where highly motivated
animals exhibit more effortful behavior in order to obtain a
reward. There are numerous studies examining the effect of
motivational states on decision making, where animals must
choose between small or large rewards that necessitate large
or small amounts of effort, respectively (Floresco and Ghods-
Sharifi, 2007; Mai et al., 2012). Animals will exert effort to
seek reward up to a certain point until the effort required
is too great and no longer worth the payoff. This threshold
is influenced by internal state and motivation, often changing
depending on context (Knauss et al., 2020). Past experiences, too,
shape internal state and motivation (Dysvik and Kuvaas, 2013).
As animals evoke memories of similar previous experiences
to evaluate the current context and most optimal choice, the
animal’s associations with a previous choice will influence their
motivation and, subsequently, their decisions and actions. As

a result of the functional interactions between the LHb and
mPFC, the LHb serves as an integrative node for motivational
and contextual information for the purpose of ensuring adaptive
and flexible responses.

LHb AND RESPONSE OR CHOICE
FLEXIBILITY

Regardless of the species under study, it is often suggested that
the habenula regulates an animal’s ability to switch learned
behavioral and cognitive strategies when a goal or context
changes. This switch is likely, not due to successive learning
by different memory systems since strategy switching occurs
much more quickly than new learning, and since multiple
memory systems are thought to essentially operate in parallel
(e.g., Mizumori et al., 2004; White et al., 2013; Hasson et al.,
2015). The ability to rapidly change behavioral strategies
is often attributed to the mPFC (e.g., Dalley et al., 2004;
Ragozzino, 2007), but species without a defined prefrontal
cortex (e.g., fish; Agetsuma et al., 2010; Okamoto et al., 2012;
Stephenson-Jones et al., 2016) show remarkable abilities to
flexibly respond in adaptive ways when a change in either
the external sensory environment (including social cues, Chou
et al., 2016) or internal state (such as motivation or use
of learned task rules; Parker et al., 2012; Randlett et al.,
2015; Cherng et al., 2020; Palumbo et al., 2020) occurs. Fish
habenula, as an example, is often suggested to enable response
or behavioral flexibility by integrating the different types of
information (including the evaluation of response outcomes,
motivation state, and sensory cues) needed to strategically switch
behavioral responses/strategies in simple and more cognitively
demanding tasks.

The mammalian LHb (relative to the MHb) seems to have
co-evolved with the cortex to process more complex sensory
and memory-related information, and in this way enable
more refined and flexible behavioral control when performing
cognitive tasks that depend on limbic cortical processing (e.g.,
by HPC and mPFC; Ichijo and Toyama, 2015; Ichijo et al.,
2017; Mizumori and Baker, 2017). Early reports of the effects of
lesions on the mammalian LHb showed that rats became unable
to switch or maintain learned behaviors when contingencies
changed in appetitive, HPC-dependent tasks (Thornton and
Evans, 1984; Thornton and Davies, 1991). Importantly, LHb
inactivation or lesion do not affect working memory, nonspecific
sensory processing, identification of spatial locations, new
learning, memory retrieval, motivation, behavioral activation,
or reward discrimination per se (e.g., Thornton and Evans,
1984; Thornton and Davies, 1991; Lecourtier et al., 2004;
Stopper and Floresco, 2014; Baker et al., 2015, 2019; Mathis
and Lecourtier, 2017; Mathis et al., 2017). The hypothesis that
the LHb importantly contributes to cortically-mediated response
flexibility received additional support when rats were tested in
HPC and mPFC-dependent tasks for which there is no right
or wrong response, but rather choice preferences reveal an
animal’s responsiveness to changing task conditions. Such tasks
require continuous and subjective value assessments to direct
choice responses. LHb inactivation was found to be sufficient to
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disrupt such choice preferences when the probability of obtaining
rewards shifted, or when the delay before reward access varied,
during both operant testing (Shohamy et al., 2009; Dickerson
et al., 2011; Delgado and Dickerson, 2012; Stopper and Floresco,
2014) and testing on open, elevated mazes (Baker et al., 2015,
2019). Importantly, spatial processing was not required for
task performance, suggesting that the HPC involvement was
related to other more integrative features of the task structure
since changed preferences were observed only after the task
structure shifted.

Understanding the specific processes and neural circuitry
underlying the transformation between memory/motivational
integration and the execution of behaviors is challenging since
the LHb is not considered to be part of the motor output pathway
that supports specific actions. Rather it is often explained that
LHb’s impact on response flexibility relies on its control over
structures known to be important for the execution of voluntary
actions (raphe nucleus and the VTA; e.g., Baker et al., 2019).
Such an explanation is not satisfactory for it is still unclear how
LHb-to-raphe or LHb-to-VTA signals can account for the type
of response flexibility often attributed to the LHb. It is suggested
here that one approach to resolving this apparent dilemma is
to take a reverse engineering approach to this question. That is,
the following starts by discussing the nature of the information
represented by LHb neurons when rats are engaged in an HPC
and mPFC-dependent natural foraging task. From there, we
consider which of many brain structure(s) may be strategically
informed by patterned LHb output to generate or enable flexible
responses.

LHb Neural Representation During
Goal-Oriented Free Navigation
If the LHb enables flexible behavioral responses to changing task
conditions, one might expect LHb neural activity to somehow
reflect this function. Indeed, the LHb has been shown to be
a critical part of the neural circuit that generates prediction
error signals when task conditions change. The well-known
dopamine neural response to prediction errors is driven at least
in part by the LHb (Christoph et al., 1986; Matsumoto and
Hikosaka, 2007; Ji and Shepard, 2007; Bromberg-Martin and
Hikosaka, 2011; Proulx et al., 2014; Baker et al., 2015; Tian
and Uchida, 2015; Lalive et al., 2021), even though this occurs
indirectly through the rostromedial tegmentum, or RMTg; Li
et al., 2019). While these findings illustrate that flexible behavior
is likely mediated by more than brain mechanism (e.g., Floresco,
2013), it clearly shows that LHb neural activity is driven
by memory-based outcome expectations. Further evidence for
the impact of experience on LHb neural responsiveness is
the well-documented change in LHb cell firing that occurs
during aversive task performance as well as duringstress (e.g.,
Stamatakis and Stuber, 2012). Is the coding and integration of
mnemonic and motivational information sufficient to ensure
flexible responding? Recordings of LHb neural activity during a
navigation-based foraging task shed new light on this question.

Using a pellet-chasing task that did not require HPC-based
context memory, Sharp et al. (2006) described striking velocity-
correlated neural activity in rat LHb. A subsequent study

by Baker et al. (2015) confirmed the existence of prominent
and strong (often r > ± 0.85) velocity-correlated LHb neural
activity but this time as rats performed an HPC-dependent
spatial working memory task. This result was surprising
given the generally accepted view that the LHb contributes
to learning and memory by signaling aversive/negative
events/consequences/information (see review by Baker
et al., 2016). However, Baker et al. (2015) also described
another group of LHb neurons that responded to reward
encounters, the expectation of rewards, and reward prediction
errors in manners similar to the responses of primate LHb
reward-responsive neurons described by Matsumoto and
Hikosaka (2007). Further, about a third of the recorded LHb
neurons showed conjunctive coding of reward and velocity
information. During subsequent probe trials in which the
reward condition or context was unexpectedly altered, the
velocity correlate was retained albeit the overall firing rate was
lowered. This pattern of reward and context coding by LHb
neurons suggests that the LHb tracks the ongoing behavior
of animals, but that the strength of movement state signals
may be regulated by reward-related information. Perhaps this
behavioral tracking feature is related to the recent report that
LHb neurons encode a history of experiences (Andalman
et al., 2019). A combination of reward and movement state
neural signaling has also been reported for an important
efferent structure of the LHb, the VTA (Puryear et al., 2010;
Jo et al., 2013), and strong movement state information
has been described as a major VTA afferent structure, the
lateral dorsal tegmentum (LDTg; Redila et al., 2015). LDTg
neurons were postulated to regulate reward responses of DA
neurons according to the learned behaviors needed to obtain
rewards. What might be the function of LHb movement state
signals?

To aid in our understanding of the significance of LHb
movement-related neural signals for response flexibility, it is
helpful to first consider the finding by Aizawa et al. (2013) that
the spiking of LHb neurons is preferentially related in time to the
peaks of simultaneously recorded HPC theta rhythms. While a
strong argument was made that the LHb spike-HPC theta phase
coherence resulted from a common input from the vertical limb
of the diagonal band of Broca, this explanation does not address
the issue of interest here, and that is how might LHb enable
task-specific response flexibility. To shed new light on this issue,
we offer the following hypothesis:

Hypothesis: During active navigation, the LHb may track
and then relay information about one’s ongoing behaviors to
signal at appropriate times when downstream brainstem structures
should drive hippocampal theta. In this way, LHb enables flexible
responding not because e it selects a particular action, but rather
because it enhances a hippocampal neural state that is often
associated with greater attention, arousal, and exploration. In
freely navigating animals, these are essential conditions that are
needed to discover and implement appropriate alternative choices
and behaviors.

The HPC theta rhythm is known to encourage exploratory
behaviors, increase arousal and attention, and improve learning
andmemory (e.g.,Winson, 1978;Mizumori et al., 1989b; Leutgeb
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and Mizumori, 1999; Lega et al., 2012; Buzsáki and Moser,
2013). Although the LHb does not have direct anatomical
connections with the HPC, functional coupling between LHb
and HPC has been demonstrated since LHb spikes exhibit
cortical synchrony with the HPC theta phase (Aizawa et al.,
2013). Such spike-phase coherence is thought to reflect periodic
influences of one structure on another (Singer, 1993; Engel
et al., 2001; Buzsáki, 2002). Recent evidence (described below)
suggests that a number of prominent LHb efferent targets
in the hindbrain area may serve as important nodes for
communication from the LHb andHPC. These structures receive
substantial input from the LHb, and they are considered to
be critical pacemakers for HPC theta. Thus, spiking activity
in the LHb may enable response and cognitive flexibility
by regulating the HPC theta state to optimize exploration-
related neural and memory plasticity. Such regulation could
strengthen and/or maintain ongoing memory operations by the
HPC during navigation of familiar contexts, as well as enable
increased cognitive and response flexibility when task conditions
change.

Transforming LHb Neural Signals Into
Hippocampal Neural States That Support
Cognitive and Response Flexibility
The diverse array of LHb efferent targets is well documented
(as reviewed in Kim, 2009; Baker et al., 2016; Mizumori
and Baker, 2017). Of particular interest here are those that
are considered theta-pacemaker structures for the HPC,
such as the nucleus incertus, supramammillary nucleus,
the median raphe, and the locus coeruleus (Figure 1). In
contrast to the traditional view that hindbrain structures
regulate slow processes such as the general state of arousal,
recent findings demonstrate temporally and spatially-specific
regulation of HPC physiology and behavior by these brain
regions.

The Nucleus Incertus (NI) lies in the midline periventricular
central gray region of the pontine hindbrain, and it is generally
considered to be an essential part of the ascending reticular
activating system (Steriade and Glenn, 1982) since it innervates
structures known to regulate HPC theta such as the MS
(Vanderwolf, 1969; Vertes and Kocsis, 1997; Goto et al., 2001;
Olucha-Bordonau et al., 2003; Ma et al., 2013). Also, stimulation
or inhibition of the NI up- or down-regulates active locomotion
(respectively), as well as modulates physiological indices of
arousal and HPC theta (Nuñez et al., 2006; Lu et al., 2020). For
example, NI neurons preferentially fire at the initial ascending
phase of the HPC theta rhythm (Ma et al., 2013), possibly to reset
theta (Martínez-Bellver et al., 2017). Evidence that NI impacts
on HPC physiology have consequences for HPC-based memory
has been demonstrated using a variety of behavioral tasks (Gil-
Miravet et al., 2021), including context fear conditioning (Szönyi
et al., 2019), various maze-based tasks (Nategh et al., 2015;
Albert-Gascó et al., 2017), as well as spatial working memory
operant tasks (Albert-Gascó et al., 2017; Garcia-Diaz et al.,
2019).

GABA and glutamate incertus neurons (Lein et al., 2007;
Cervera-Ferri et al., 2012) express receptors for stress-
related hormones (corticotropin-releasing factor, or CRF)
and contain multiple neuropeptide markers for stress and
arousal such as neuromedin, relaxin, D2 dopamine receptors,
and orexin/hypocretin (e.g., Jennes et al., 1982; Kubota et al.,
1983; Ma et al., 2013; Lu et al., 2020). Therefore, the NI had
been studied primarily for its role in different physiological
states. However, as noted above, more recent emerging evidence
clearly shows that especially the relaxin-3 NI neurons likely
play a significant role in HPC-based memory (Gil-Miravet
et al., 2021). For example, these relaxin-3 neurons are the
ones that preferentially fire at the initial ascending phase
of the HPCtheta rhythm (Ma et al., 2013). Furthermore,
Szönyi et al. (2019) identified an incertus-HPCcircuit that
may determine which CA1 pyramidal neurons take part in
context memory processing: NI long-range GABAergic neurons
project directly and indirectly (via the medial septum) to
HPCsomatostatin neurons to regulate the excitatory/inhibitory
balance in stratum oriens of CA1, thereby helping to select
which cells participate in memory networks and which
ones do not. Since the NI receives strong projections from
the prefrontal cortex and the LHb (Goto et al., 2001;
Lu et al., 2020), one or both of these incertus afferent
systems may drive the NI to regulate HPC neural activity
in context-specific ways.

The supramammillary nucleus (SUM) is another deep brain
structure of interest when considering how LHb neural activity
may translate to HPC-mediated response flexibility. The SUM is
a hypothalamic structure that provides strong direct and indirect
(via the medial septum) theta-rhythmic inputs to the HPC
(Haglund et al., 1984; Vertes, 1992, 2015; Kirk and McNaughton,
1993; McNaughton et al., 1995; Kocsis and Vertes, 1997; Vertes
and McKenna, 2000; Ito et al., 2018). The overall functional
impact of the SUM input is to not only generate HPC theta (Pan
and McNaughton, 2004), but SUM afferents amplify neocortical
input to the HPC by increasing the responsiveness of dentate
gyrus granule cells to input from the entorhinal cortex through
disinhibition of inhibitory interneurons (Mizumori et al., 1989a).
Such regulation of the excitatory state of granule cells may
selectively promote information arriving from the entorhinal
cortex. More recently, behaviorally-relevant functional coupling
between the SUM and the HPC was shown when SUM spiking
became HPC theta phase-modulated particularly before choice
points in a continuous alternation task (Ito et al., 2018).
Specifically, SUM cells became aligned to the later phases
of the CA1 theta cycle, and SUM spiking began close to
the time of firing by CA1 interneurons. In the same study,
the SUM was demonstrated to be a critical coordinator of
communication within the HPC-mPFC-nu. reuniens memory
circuit. Thus, it was suggested that the SUM (and by extension,
the LHb) dynamically coordinates HPC-related memory circuits
by varying spiking relative to HPC theta (Ito et al., 2018).

Not only does the SUM regulate intra- and extra-HPC
information processing, but recently it was elegantly
demonstrated that the SUM may provide and/or facilitate
specific types of information processing in the HPC via its
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FIGURE 1 | Schematic of the anatomical projections to and from the lateral habenula (LHb; shown in teal). Thick lines highlight LHb projections most strongly
related to hippocampal function. HPC, hippocampus; LC, locus coeruleus; LDTg, lateral dorsal tegmentum; LHb, lateral habenula; LS, lateral septum; mPFC, medial
prefrontal cortex; MR, medial raphe; MS, medial septum; NI, nucleus incertus; RMTg, rostromedial tegmentum; SUM, supramammillary nucleus; VTA, ventral
tegmental area.

distinct direct inputs to the dentate gyrus and region CA2
(Vertes and McKenna, 2000). The SUM to dentate gyrus input
may signal contextual novelty while the SUM to CA2 input
may signal social novelty (Chen S. et al., 2020). Thus, the SUM
appears to be not only involved in the generation of the HPC
theta, but it is also important for gating contextual and social
information processing within the HPC. Further, SUM enables
HPC to communicate with partnered mnemonic structures such
as the mPFC and the nu. reuniens. Given the multiple ways
that the SUM impacts HPC processing, it is not surprising that
lesion or reversible inactivation of the SUM has been shown to
impair different types of HPC-dependent behaviors as shown in
spatial working memory and certain avoidance tasks (Shahidi
et al., 2004a,b; Aranda et al., 2006, 2008), and to be activated
during times of stress (Wirtshafter et al., 1998; Ito et al., 2009;
Choi et al., 2012). Given the strong input from the LHb to
the SUM (Kiss et al., 2002), the SUM is a strong candidate for
linking functions of the LHb and HPC (as noted by Goutagny
et al., 2013). Here we hypothesize more specifically that the
theta-rhythmic firing of SUM neurons may be regulated by
LHb behavioral/movement state signals, and in this way, LHb
output can generate the conditions needed for animals to flexibly
respond to changes in task conditions.

The median raphe (MR) has long been studied for its role in
emotion and stress regulation (e.g., Graeff et al., 1996; Andrade
et al., 2013). Recently (Baker et al., 2015), it was suggested
that the MR may also play a critical role in the coordination
of communication between the LHb and HPC since the MR
receives strong input from the LHb (Quina et al., 2015; Metzger

et al., 2017), the MR has strong projections to a broad extent
of the HPC (Azmitia and Segal, 1978; Vertes et al., 1999) and
the MR has been shown to significantly impact HPC-dependent
behaviors and theta/ripple oscillations (Vertes and Kocsis, 1997;
Wang et al., 2015) Thus, theMR is strategically situated to at least
assist in the transformation of LHb signals to regulate HPC theta
in a manner that facilitates response flexibility. Indeed, a link
between serotonergic function and response flexibility is often
discussed given the numerous studies that report alterations
of serotonin receptors or neurotransmitter release results in
difficulties performing classic response flexibility tasks such
as set-shifting and strategy shifting (excellent reviews include
Nilsson et al., 2015; Alvarez et al., 2021).

The locus coeruleus (LC) is another hindbrain structure that
(in anesthetized and awake rats) is known to project to HPC
to impact theta and gamma oscillations (Gray et al., 1975;
Walling et al., 2011; Broncel et al., 2021), and to receive at
least modest input from the LHb (Mathis et al., 2021). As
reviewed by Sara (2009) and Poe et al. (2020), LC neural firing
has long been observed to occur in response to novelty, to
signal-mismatches events, and to attentional shifts (Aston-Jones
and Bloom, 1981a,b; Aston-Jones et al., 1991; Sara and Segal,
1991; Hervè-Minivielle and Sara, 1995; Bouret and Sara, 2005).
Our cumulative understanding of the broad impact of the LC
across many brain regions as well as the diverse cell types
and patterns of LC neural activity have led to theories that
especially phasic LC activity enhances the execution of actions
in response to unexpected stimuli (Aston-Jones and Cohen,
2005). LC activation, then, effectively resets neural networks to
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enable rapid switches of cognitive representations or response
strategies when needed (Sara and Bouret, 2012). These types of
LC responses appear necessary for animals to exhibit adaptive
behaviors (Yu and Dayan, 2005). Thus, in addition to the NI,
SUM, andMR, the LC is a strong region of interest for its putative
role in transmitting LHb signals to the HPC by establishing an
HPC theta state that supports response and cognitive flexibility
(Figure 2).

LHb CONTRIBUTES TO RESPONSE
FLEXIBILITY ALONG MULTIPLE
TIMESCALES: IMPLICATIONS FOR
UNDERSTANDING LHb-RELATED
PSYCHOPATHOLOGIES

Multiple Time Scales of LHb Neural
Responses and the Impact on Response
Flexibility
Based on our extant knowledge and theories about how the
LHb contributes to response flexibility, an important and
fundamental question arises: How does one reconcile findings
that the LHb signals short duration aversive events (Matsumoto
and Hikosaka, 2007), while also signaling longer-duration
behavioral/movement states (Baker et al., 2015). One explanation
is that while LHb broadly tracks the current sensory/behavioral
situation, LHb neurons exhibit different patterns of firing
depending on the types of information being tracked. LHb
neurons may fire phasically to single, short-duration events such
as sensory stimuli or a particular goal outcome, or they may
fire tonically during longer-duration behavioral state conditions
such as movement through space. This sort of dual-coding is
not uncommon in the brain. One example is that the same VTA
dopamine neurons fire phasically to rewards, and tonically when
moving through space (e.g., Puryear et al., 2010; Jo et al., 2013).
Either short- or long-duration firing could impact response
flexibility that is enabled by the LHb efferent structures described
earlier. For example, encountering an unexpected reward should
result in phasic LHb cell firing, which would signal efferent
structures to increase HPC theta to resolve a potential conflict
between expected and actual context features (Mizumori et al.,
1999). When tracking sensory/behavioral information across this
relatively short period, the LHb may be serving as a brake signal
to halt the initiation of potential inappropriate behaviors thereby
allowing other adaptive behaviors to commence (Sleezer et al.,
2021). When faced with other aversive situations, LHb output
may instead result in the engagement of avoidance behaviors.
In either case, LHb activity is considered critical during flexible
action selection.

By comparison, tonic LHb neural activity for example during
spatially-extended navigation, should signal hindbrain regions
to elevate HPC theta for the duration of the translocation in
space. Such signaling is postulated (see above) to enable the
timely enhancement of neuroplasticity mechanisms needed to
evaluate the current context so that memories can be updated
in preparation for a future decision. That is, LHb-induced HPC

theta may result in greater attention and arousal, along with a
stronger neuroplasticity state that provides the basis for more
efficient and timely context evaluation. Such context analysis
is considered essential in order to then execute adaptive and
flexible responses in the future. During real world navigation,
the LHb engages in both short (sensory) and intermediate-term
(during navigation) behavioral monitoring in the same context as
evidenced by LHb neurons that show both reward and velocity-
related neural codes (Baker et al., 2015). Such dual time frame
coding may not be needed in Pavlovian or operant tasks that
do not require animals to move about in a spatially-extended
environment, but rather they only require information to be
associated over relatively short time scales. Thus, assessing LHb
in navigating animals may reveal an extended complement of
potential contributions to adaptive responding.

In sum, we propose a) that the LHb contributes to response
flexibility by tracking behavior across short (in the tens of ms
to seconds range) and intermediate (in the range of seconds to
hours or more) time frames. Prolonged disturbances of function
in either of these time domains can result in different behavioral
disorders and psychopathologies.

LHb Dysfunction in the Short and
Intermediate-Term
LHb responses to short-term aversive or appetitive stimuli are
necessary for proper adaptive behavior and do not typically result
in behavioral maladaptations (Baker et al., 2015). As shown
in many of the experiments described previously, inaccurate
stimulus coding results in suboptimal decisions. If LHb encoding
of behavioral and movement states are deficient, one would
expect impaired and inappropriate activation of HPC theta,
which could lead to memory deficits. We also know, based on
extensive research on the role of LHb in processing aversive
information, the LHb plays a substantial role in fear memories.
For instance, in the case of fear conditioning, it is important
to learn the association between a specific context and the
potential threat. In aversive situations, not only does the LHb
respond to the aversive stimulus, but also to the cue predicting
the onset of the aversive stimulus (Lecca et al., 2017; Lazaridis
et al., 2019; Trusel et al., 2019). It takes merely five trials in
order for short-scale synaptic changes to occur in the LHb,
likely between the LHb and the RMTg (Wang et al., 2017).
Also, inactivation of the LHb following fear conditioning of a
context resulted in context memory impairments (Durieux et al.,
2020). Furthermore, in the same experiment, the c-fos expression
following fear conditioning increased in the HPC, mPFC, as
well as the LHb, suggesting an involvement of this circuit in
contextual fear memories. Thus, in situations when the LHb does
not appropriately function over periods of seconds to minutes
to hours, one sees impaired decision making and poor context
memory.

Prolonged LHb Dysfunction
Extended and hyperactive LHb aversive signaling can lead to
long-lasting plasticity-related changes, resulting in psychiatric
disorders such as depression, schizophrenia, and addiction
(Metzger et al., 2021). In support of this theory, studies have
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FIGURE 2 | Information flow through our hypothesized circuit (see text) that mediates context-dependent response flexibility during active navigation. Context
information from the hippocampus (in the form of place field sequences) informs decision processes of the medial prefrontal cortex and septal complex via
reward-modulated theta coherence. The output of this memory/decision system integrates with motivational information in the lateral habenula. Lateral habenula
neurons integrate this information over many seconds to discharge tonically (to encode current behavioral state, or velocity) or phasically (to encode short duration
stimuli/events such as reward outcome). Both types of signals are driven by motivational, memory and decision processing (see text). The output of lateral habenula
is hypothesized to provide a signal to hindbrain regions known to regulate hippocampal theta. In this way, the lateral habenula may establish/maintain a neural state
in hippocampus that encourages the increased attention and exploratory tendencies needed for animals to respond flexibly to changing task conditions. DA,
dopamine; HPC, hippocampus; mPFC, medial prefrontal cortex.

shown that cocaine exposure induces increased AMPA receptor
expression in excitatory LHb neurons, causing long-term
potentiation and hyperexcitability (Maroteaux and Mameli,
2012). Similarly, prolonged exposure to an aversive stimulus,
such as a foot shock, results in decreased GABAb receptor
expression in excitatory LHb neurons, leading to disinhibition
and hyperexcitability of LHb neurons (Lecca et al., 2016).
Along with synaptic changes, stress and other environmental
factors can induce changes in LHb gene expression (Levinstein
et al., 2020). Specifically, expression of genes implicated in the
RMTg, and not VTA or DRN, pathway is increased in the LHb
following stress. These genetic changes alter the strength of
the connections between the LHb and downstream structures,
resulting in long-lasting changes in plasticity.

Excessive LHb activity can also lead to impaired motivated
behavior and result in the pathophysiology of depression. In
fact, the LHb is the only brain region that exhibits consistent
hyperactivity in depression (Caldecott-Hazard et al., 1988;
Andalman et al., 2019). One of the pathways implicated in
the expression of depression-like symptoms is the LHb-RMTg
pathway that inhibits dopaminergic activity in the VTA and other
structures (Proulx et al., 2018). Another pathway underlying this
disorder is the LHb’s increased excitation of raphe inhibitory
interneuron-based inhibition of serotonergic neurons, which
causes a passive coping transition, a marker of depression (Amat
et al., 2001; Andalman et al., 2019; Coffey et al., 2020). Ketamine,
a common antidepressant medication, has been shown to elevate
raphe activity in addition to decreasing the hyperactivity of the

LHb, consistent with the role of this pathway in depression (Cui
et al., 2018; Yang et al., 2018; López-Gil et al., 2019).

Maladaptive activity in the PFC is frequently tied
to the phenotype of schizophrenia (Weinberger et al.,
2001). Specifically, the established dopamine hypothesis of
schizophrenia posits that schizophrenia arises as a result
of dopaminergic hyperactivity in subcortical areas due to
cortical dysfunction (Winterer and Weinberger, 2004). In a
rat model of schizophrenia, Li et al. (2019) found that there
was significant hypofunctionality in the LHb, potentially
disinhibiting subcortical dopamine activity. In the same
experiment, lesioning the LHb of schizophrenic rats resulted in a
significant decrease in cortical activity. Interestingly, functional
connectivity between the habenula and cortex increases in
schizophrenic patients, suggesting that the habenula may be
contributing to the cortical dysfunction seen in schizophrenia
(Zhang et al., 2017). Moreover, serotonergic activity in the DRN
increases in the pathophysiological profile of schizophrenia.
Typically, in healthy brains, the LHb functions to inhibit
serotonergic activity in the DRN. However, in schizophrenia,
LHb activity is hypoactive, disinhibiting serotonergic activity
in the DRN. When the LHb is lesioned in schizophrenic rats,
serotonin levels in the DRN, as well as in the mPFC, increased
(Li et al., 2019). Owing to these findings, hypofunction in the
LHb may contribute to the pathophysiology of schizophrenia.

Likely as a consequence of its critical role in reward valuation
and processing, the LHb plays a large role in addiction.
Repeated drug exposure results in addiction, or excessive
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FIGURE 3 | Schematic of hypothesized molecular effect on excitatory lateral habenula neurons during long-term dysfunction (A) and psilocybin administration (B).
Events are numbered in succession. AMPAR, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; GABA, gamma-aminobutyric acid; GABAR,
gamma-aminobutyric acid receptor; GLU, glutamate; LHb, lateral habenula; Na, sodium.

drug-seeking behavior, and is tied to increases in LHb activity
(Zhang et al., 2005). Although the LHb processes both aversive
and rewarding properties of stimuli (Matsumoto and Hikosaka,
2009b), it appears that the LHb primarily responds to the
aversive properties of drug exposure (Zhang et al., 2013). In
particular, LHb activity is thought to underlie the negative
effects of drug-seeking behavior through its projection to the
RMTg (Meye et al., 2015). In support of this finding, Maroteaux
and Mameli (2012) showed that cocaine exposure results in
increased AMPA receptor expression in LHb neurons selectively
projecting to the RMTg. Lastly, chronic drug exposure causes
neurodegeneration in the main output fiber bundle of the LHb,
the fasciculus retroflexus, disrupting the LHb’s communication
with and modulation of downstream monoaminergic structures
(Lax et al., 2013).

Therapeutic Treatment for LHb
Dysfunction
Reasoning that long-term LHb function underlies maladaptive
behavior, clinicians recently target the LHb in an attempt to
correct LHb dysfunction as a therapeutic approach. Deep brain
stimulation (DBS) of the LHb has been one such therapeutic
procedure that is producing encouraging results (Sartorius
et al., 2010). Interestingly, DBS frequency parameters exhibit
differential therapeutic outcomes in distinct disorders such as
depression and addiction (Ferraro et al., 1996). For an in-depth
discussion of DBS in the LHb, see the excellent review by
Germann et al. (2021). Relatedly, ketamine has proven to be

a successful therapeutic treatment that inhibits the LHb and
disinhibits reward centers such as dopamine and serotonin (Yang
et al., 2018).

Another emerging therapeutic approach for the development
of treatments for LHb-related psychopathology focuses on
the serotonergic system. Evidence suggests that serotonergic
dysfunction results in the inability to adapt to changing
environmental conditions, as seen in depression and addiction.
Interestingly, the effects of serotonin depletion or overexpression
do not always resemble one another across studies. For instance,
Lapiz-Bluhm et al. (2009) showed that chronically stressed rats
that were serotonin-depleted using para-chlorophenylalanine
showed significant deficits in reversal learning which was rescued
with a serotonin reuptake inhibitor. In a separate study, humans
were exposed to a rapid tryptophan depletion paradigm on a
reversal-learning task and exhibited slightly improved decision-
making (Talbot et al., 2006). Such discrepancy in the literature
may be attributed to inter-species differences, as well as the
reliability of the drug cocktail protocol. Recent evidence has
exposed distinct functions of serotonin subtypes as the main
culprit (Alvarez et al., 2021). Importantly, Morris et al. (1999)
showed that selective serotonin depletion causes significant
increases in LHb activity, mimicking the neural correlate
of depression, compared to other structures. Furthermore,
tryptophan depletion causes a significant impairment in context
memory in mice, implicating the serotonergic system in both
motivation and context memory (Uchida et al., 2007). Serotonin
2A receptors subtype has been extensively studied in relation
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to its influence on behavioral flexibility. A selective serotonin
2A receptor blockade significantly impaired performance on
a spatial reversal learning task (Boulougouris et al., 2008). In
the same study, a selective serotonin 2C receptor blockade
improved performance on a spatial reversal learning task.
Interestingly, serotonin 2C and serotonin 2A receptors are
found on GABAergic dorsal raphe neurons (Serrats et al.,
2005). Psilocybin, being studied as an antidepressant, is a
strong serotonin 2A receptor agonist and serotonin 2A receptors
are highly expressed in the LHb. This raises the question
as to whether psilocybin has modulatory effects on LHb
activity. Indeed, activation of serotonin 2A receptors inhibits
excitatory LHb neurons, likely through the facilitation of
GABAergic transmission, suggesting that psilocybin mimics a
neuromodulator and works to rescue LHb dysfunction (Figure 3;
Shabel et al., 2012; Metzger et al., 2017). In support of this,
psilocybin administration has proven effective in drug-resistant
depression (Carhart-Harris et al., 2018), and addiction (Johnson
et al., 2014). Whether the therapeutic effects of psilocybin result
from the direct action on LHb activity, however, is not yet clear
and is in need of further study.

The diversity of LHb inputs from cortical and subcortical
areas makes the LHb a prime region for integrating information
related to context memory and motivation. Likewise, the LHb’s
downstream control of monoaminergic centers, as well as
the HPC, implicates it in a number of psychiatric disorders,
such as those described above. The reviewed data provide a
compelling argument that the LHb should be one of the primary
targets of therapeutic intervention, such as with psilocybin,
for psychiatric disorders that manifest in context memory,
motivational impairments, and certain disorders of behavioral
control.

CONCLUSION

An outstanding and challenging question is how the LHb
enables response flexibility. Here, it is hypothesized that LHb
may enable response flexibility by integrating context memory

and internal state information to provide critical feedback to
memory systems (e.g., the hippocampus) about the outcome of
choices and the status of behaviors (e.g., movement velocity).
Importantly, this feedback may upregulate neural states in HPC
when a context change requires flexible responding to maintain
accurate decisions. The upregulation of at least HPC theta could
enable the greater attention, arousal, and behavioral activation
needed for response flexibility. This feedback system to the HPC,
then, may represent a critical step in the loop of information
processing between context memory and decision systems,
intrinsic motivational systems, response implementation, and
memory updating and retrieval that is needed to flexibly redirect
responses. Supporting our hypothesis, improper functioning of
the LHb results in impairments in behavior related to response
flexibility such as those seen in psychiatric disorders.
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